Regulation of epithelial and endothelial junctions by PAR proteins.
نویسندگان
چکیده
The organization of tissues depends on intercellular junctions that connect individual cells to each other. In sheets of epithelial cells the junctions contain different components like adherens junctions or tight junctions in an asymmetric distribution along the cell-cell contacts. Tight junctions are located at the most apical region of cell junctions, act as a regulatable barrier for small solutes, and separate the apical membrane domain from the basolateral membrane domain. For a long time, the mechanisms that underly the formation of tight junctions and the development of apico-basal membrane polarity in epithelial cells have been poorly understood. Recently, strong evidence has been provided which implicates a conserved set of cell polarity proteins--the PAR proteins--in this process. Here we discuss the mechanisms by which PAR proteins regulate the formation of cell junctions with a special emphasis on vertebrate epithelial cells.
منابع مشابه
The junctional adhesion molecule (JAM) family members JAM-2 and JAM-3 associate with the cell polarity protein PAR-3: a possible role for JAMs in endothelial cell polarity.
Tight junctions play a central role in the establishment of cell polarity in vertebrate endothelial and epithelial cells. A ternary protein complex consisting of the cell polarity proteins PAR-3 and PAR-6 and the atypical protein kinase C localizes at tight junctions and is crucial for tight junction formation. We have recently shown that PAR-3 directly associates with the junctional adhesion m...
متن کاملA distinct PAR complex associates physically with VE-cadherin in vertebrate endothelial cells.
A cell polarity complex consisting of partitioning defective 3 (PAR-3), atypical protein kinase C (aPKC) and PAR-6 has a central role in the development of cell polarity in epithelial cells. In vertebrate epithelial cells, this complex localizes to tight junctions. Here, we provide evidence for the existence of a distinct PAR protein complex in endothelial cells. Both PAR-3 and PAR-6 associate ...
متن کاملJunctional adhesion molecules (JAMs): more molecules with dual functions?
Junctional adhesion molecules (JAMs) are members of an immunoglobulin subfamily expressed by leukocytes and platelets as well as by epithelial and endothelial cells, in which they localize to cell-cell contacts and are specifically enriched at tight junctions. The recent identification of extracellular ligands and intracellular binding proteins for JAMs suggests two functions for JAMs. JAMs ass...
متن کاملPseudomonas aeruginosa elastase causes transient disruption of tight junctions and downregulation of PAR-2 in human nasal epithelial cells
BACKGROUND Pseudomonas aeruginosa causes chronic respiratory disease, and the elastase enzyme that it produces increases the permeability of airway epithelial cells owing to the disruption of tight junctions. P. aeruginosa is also implicated in prolonged chronic rhinosinusitis. However, the effects of P. aeruginosa elastase (PE) against the barrier formed by human nasal epithelial cells (HNECs)...
متن کاملPAR-3 mediates the initial clustering and apical localization of junction and polarity proteins during C. elegans intestinal epithelial cell polarization.
The apicobasal polarity of epithelial cells is critical for organ morphogenesis and function, and loss of polarity can promote tumorigenesis. Most epithelial cells form when precursor cells receive a polarization cue, develop distinct apical and basolateral domains and assemble junctions near their apical surface. The scaffolding protein PAR-3 regulates epithelial cell polarity, but its cellula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Frontiers in bioscience : a journal and virtual library
دوره 13 شماره
صفحات -
تاریخ انتشار 2008